The recent technological development of the personal computer has made available to practically every biologist and biology student a convenient tool for developing and implementing a wide range of complex simulations. The graphical capability of most personal computers is particularly attractive for many simulations. BASIC is the most widely used and understood computer language. It was developed specifically as an easily learned language, and has no equals for this. The generic BASIC used in this text is designed for easy implementation on most machines using most dialects of the language.

PART ONE

SIMPLE MODEL EQUATIONS

The critical assumption behind all biological simulation is that an equation may serve as an analog or model of a simple biological process. The assumption seems reasonable because almost any biological process may be described by a cause-effect or stimulus-response curve (Figure P1.1). The curve will relate the intensity or amount of some causative or stimulating agent to the intensity or amount of a biological response or effect. Traditionally, the measure of the agent, called the independent variable x, is recorded along the horizontal axis of a graph, and the measure of the biological effect or response, called the dependent variable y, is expressed along the vertical axis. It is possible to arrange the axes differently, but we will try to retain the conventional arrangement as far as possible.

The response of a biological system may be studied experimentally under different conditions, and the resulting data may be used to construct

![Diagram](image_url)

Figure P1.1. Graph of the simple cause-and-effect relationship.
a cause-effect curve. The curve will show the quantitative performance of the system under a given set of conditions. It is therefore a diagrammatic model of the system. Curves are also used to show the behavior of equations that relate one variable to another. Thus it is possible, in one way or another, to find an equation which will generate output data that resemble mathematically the data produced by the biological system. The equation, therefore, also becomes a model of the biological process. The equation can stand in place of, or substitute for, the biological system in terms of its relationship to other components of the system involved in the process. Mathematically, the equation is interchangeable with the process, as illustrated in Figure P1.2.

STEP

1 CAUSE (stimulus) → SYSTEM COMPONENT → EFFECT (response)

2 INPUT → OUTPUT

3 x → y = f(x) → y

4 x → MODEL EQUATION → y

Figure P1.2. Stepwise replacement of a component of a biological system with a model equation.

The procedure for finding an appropriate model equation first involves identifying the functional relationship of the system involved in the process we are modeling. By examining the data we are usually able to set up a simple function that describes the output variable y, as a function of the input variable x. Conventionally, the general form of the function equation is y = f(x). Sometimes the output variable y is determined experimentally to be a function of more than a single input variable, so that the equation has the form y = f(x, z). Most of the biological processes considered in this book involve only a single independent variable other than time.

After finding an equation that effectively mimics the biological response, we still must find appropriate values for the constants, coefficients, and exponents of the model equation. These may be estimated with trial and error, or by more formal procedures such as curve fitting. With very complex models, trial and error may be the only available technique. After assigning values, it is possible to implement a simulation program on a computer. The computer program may be verified to make sure it is performing as expected. The model equation may be validated or corroborated by comparing simulation data with data obtained by observation or experiment.

Part One of this text considers the two principal techniques used to find the functional relationship between x and y. The analytical technique gives rise to theoretical or mechanistic model equations, while the empirical technique results in descriptive or empirical equations.

Empirical models are obtained using statistical methods to fit one of several generalized equations to experimental data. Such models do not depend upon any insight the modeler may have about the workings of the biological system or process. In contrast, analytical or mechanistic models are based on equations that are derived from conceptual models of the biological process. The distinction is not completely clear, because empirical techniques may play a role in the initial formation of the conceptual model. The theoretical basis for an analytical model is corroborated when experimental data and simulation data correspond more or less closely.

In the five chapters making up Part One of this book, you will be introduced to several of the more common mathematical models in biology, and to methods that are used in almost all biological simulations. You should be able to accomplish the following:

1. Learn how to write BASIC programs to produce simulation data from simple model equations;
2. Learn how to produce graphs of simulation data;
3. Know the steps used to produce mechanistic equations from simple conceptual models;
4. Understand the usefulness and derivation of models produced from assumptions of stable systems;
5. Become familiar with the form of curves produced by several function equations that are found frequently in biological work;
6. Know how to find values for constants of both theoretical and empirical model equations, using curve fitting techniques;
7. Learn about programming flowcharts and about some simple techniques for testing computer programs;
8. Know how to program some elementary Euler techniques for numerical integration of simple equations.
When you have accomplished these goals, you should be ready to proceed to Part Two of the book, which involves application of these methods to a number of models from a variety of biological fields.

CHAPTER 1
ANALYTICAL MODELS BASED ON DIFFERENTIAL EQUATIONS

Analytical models are often expressed as differential equations that define a rate of change of some dependent variable with respect to some independent variable. In biological models, the independent variable is usually time, distance or concentration. To show how models may be developed using differential equations, we will look at a model for biological growth, with time as the independent variable and growth as the dependent variable. Several other simple analytical models based on differential equations will also be presented as further illustrations. These simple models can be used in writing short computer programs for simulating biological processes. Even though they are brief, these programs will let you become familiar with techniques used for the remainder of the book.

1.1 A Model of Biological Growth

A major reason for using differential equations to develop models is that these equations are easily obtained from common sense "function equations". For the purpose of developing this growth model, we will be interested in a population of cells, perhaps cells in a tissue culture dish, or yeast cells or bacteria cells in a culture flask. We observe that cell growth rate (number of cells added per hour) depends on the number of cells already present. That is, if we have one culture with 10 cells and another with 100, the culture with 100 cells will produce more new cells in an hour than the culture with just 10 cells. Likewise, we note that a culture with 0 cells will not produce any new cells. From these general observations, we can write a simple function equation for growth of cell numbers:

\[G = f(N) \]

(1.1)

where \(G \) is the growth rate and \(N \) is number of cells.
If we assume that growth is a direct function of \(N \) (i.e. that growth depends directly on \(N \), or that it is directly proportional to \(N \)), and if we also assume no other factors are involved, then the growth rate equation will take this form:

\[
G = kN
\]

(1.2)

where \(k \) is a constant of proportion. If you were to graph this equation, showing \(N \) (population number) on the x-axis and \(G \) (growth rate) on the y-axis, the result would be a straight line with a slope of \(k \). That is, as \(N \) increases, \(G \) would increase in direct proportion.

The equation has limited value in this form, because just now we are interested in population numbers during the time of growth, rather than in the rate of growth. We need to convert our equation to a form giving this information. To do this, first we define growth rate \(G \) as \(dN/dt \). This new expression symbolizes the instantaneous rate of change of number with respect to time. Our equation is now written as

\[
\frac{dN}{dt} = kN
\]

(1.3)

Equations 1.2 and 1.3 have identical meanings, but Equation 1.3 is in terms of the two variables we want, \(N \) and \(t \). Now we can find the equation for growth of the population by integrating Equation 1.3. Mathematicians know how to perform integrations as a result of their experience with the reverse process of differentiation. From their experience they have developed a large number of integration rules, which are found in most textbooks of calculus.

If we use these rules, several useful forms of the equation will be obtained following integration:

\[
\ln N_t - \ln N_0 = kt
\]

(1.4)

and

\[
\frac{N_t}{N_0} = e^{kt}
\]

(1.5)

and

\[
N_t = N_0 e^{kt}
\]

(1.6)

The intermediate steps in this integration may be found in most textbooks of calculus and of population ecology (e.g. Hutchinson 1978). For biological purposes, Equation 1.6 is extremely useful and will occur in many different contexts. Here it describes the number of cells in the population at any time (\(N_t \)), based on the initial population size (\(N_0 \)) and the growth constant (\(k \)). The base of natural logarithms is given as \(e \). The form of the curve of numbers over time is shown in Figure 1.1. Over
100 REM SIMULATION OF EXPONENTIAL GROWTH
110 REM
120 LPRINT "TIME", "POPULATION SIZE"
130 LPRINT " 0" 5 10 15 20 25"
140 U = .1
150 NO = 2
160 FOR T=0 TO 25
170 NT = NO * EXP (U*T)
180 Y = INT(NT*60/30)
190 LPRINT T; TAB(5); "*"; TAB(Y+5); "*"
200 NEXT T
210 LPRINT " 0" 5 10 15 20 25"
220 END

TIME
0 -------------- 5 -------------- 10 -------------- 15 -------------- 20 -------------- 25
0 +
1 +
2 +
3 +
4 +
5 +
6 +
7 +
8 +
9 +
10 +
11 +
12 +
13 +
14 +
15 +
16 +
17 +
18 +
19 +
20 +
21 +
22 +
23 +
24 +
25 +

0 -------------- 5 -------------- 10 -------------- 15 -------------- 20 -------------- 25

Figure 1.2. Program and output for Exercise 1-2, set up for a simple line printer. (The program was written for the IBM-Microsoft BASIC interpreter. The LPRINT statements in Lines 120, 130, 190 and 210 send output to the "line printer". The LPRINT statement is not available in all versions of BASIC, although the equivalent exists in all BASICS.)

ANALYTICAL MODELS FROM DIFFERENTIAL EQUATIONS 21

showing bacterial density as a function of time from 0 to 120 minutes. Set up the output so that bacterial density is plotted on the y-axis and time is plotted on the x-axis. Appendix 2 gives a listing of graphical programs for some microcomputers. Figure 1.2 shows the growth model used in a sample program that produces graphical output for computers equipped with simple printers.

1.2 Exponential Decay

As a sort of converse to the growth process described above, some biological systems will show a decline in concentration of a certain substance through time, with the loss rate proportional to the concentration of the substance present at any time. Following the same procedure as above, we can arrive at a differential equation describing this process of decline:

$$\frac{dC}{dt} = -kC$$

(1.7)

Here, C is the concentration of the substance being used up, and k is the rate constant. The negative sign is needed to indicate the reduction in C. This equation integrates to

$$C_t = C_0 e^{-kt}$$

(1.8)

This is the classical model for exponential decay used to describe processes such as weight loss during starvation, excretion of drugs or a radioisotope from an organism, light absorption in a liquid, radioactive decay, and other phenomena. Note that in each of these examples the dependent variable will approach zero as t approaches infinity.

Exercise 1-3: Write a program using Equation 1.8 to simulate the decay of the radioactive isotope 32Phosphorus. Begin your simulation with a specific activity of 500 µcuries, and use a value of $k = 0.04847$ day$^{-1}$. Produce graphical output that shows remaining activity from 0 to 100 days. Use a pencil and straightedge to estimate the isotopic half-life (time for activity to be reduced by 50%).

1.3 Distribution of Organisms

The exponential decay model has been used in a variety of biological research areas to describe the distribution of plants and animals. The organisms are assumed to have a central location of maximum concentration. Their density away from that point is assumed to follow a classical
diffusion pattern, which will result in a negative exponential decline in density away from the central locus. Two such situations are given in the following pair of exercises.

Exercise 1-4: Aquatic crustaceans and immature insects that inhabit flowing water will at times release themselves from the streambed and drift downstream. McClay (1970) used the following model based on exponential decline to describe downstream densities:

\[N_x = N_0 e^{-Rx} \]

(1.9)

where \(N_0 \) is population density at the source of animals, \(N_x \) is the density at a distance \(x \) meters downstream from the source, and \(R \) is a constant that applies uniquely to the organism in a given stream. Write a program to simulate stream drift for larval chironomid insects in a stream, where \(R = 0.13 \text{ m}^{-1} \). Assume density of these animals is 1200 meter\(^{-2}\) at their source. Your graphical output should show density at each meter for a distance of 60 meters downstream from the source.

Exercise 1-5: Van Dover et al. (1987) used this same exponential model to describe distribution of a deepwater crab, *Bythograea*, that lives around hydrothermal vents in the Pacific Ocean. The animals were observed to be most abundant immediately around the vents, with a density of about 100 per unit of camera viewing area (about 845 m\(^2\)). In any direction from a vent, their density decreased, with \(R = 8.56 \text{ km}^{-1} \). Write and implement a program to find density of crabs as a function of distance from a hydrothermal vent. As output, produce a graph that shows their symmetrical distribution along a line running through a vent, from 600 meters on one side to 600 meters on the other.

1.4 Newton's Law of Cooling

The basic form of exponential decline given in Equation 1.8 has been modified slightly to provide the basis of numerous biological models. An example is Newton's Law of Cooling as a model for loss of heat from a cooling object. This law states that temperature of an object drops at a rate proportional to the difference between the temperature of the object and the temperature of the environment. The rate of temperature change with time is given by

\[\frac{dT}{dt} = -k(T - C) \]

(1.10)

where \(C \) is the environmental temperature and \(k \) is a cooling rate constant. Equation 1.10 integrates to an equation describing the temperature of a cooling object through time:

\[T_t = C + (T_0 - C)e^{-kt} \]

(1.11)

where \(T_t \) is the temperature of the object at time \(t \) and \((T_0 - C) \) is the difference between the initial temperature and the environmental temperature, with \(C \) held constant throughout the cooling process. The relationship of Equation 1.11 to Equation 1.8 for exponential decay is obvious when \(C \) is set to zero. (Note that Equation 1.11 also holds for "negative cooling" when \(C \) exceeds \(T_0 \).)

Exercise 1-6: Use Equation 1.11 to write a program for simulating the cooling of a human corpse with \(k = 0.06 \text{ hour}^{-1} \), which is the approximate value for an average clothed adult male in still air. Assume a normal body temperature of 37°C initially and a constant environmental temperature of 8°C. Set up your program to produce a graph showing body temperature during the 48-hour period following death.

1.5 Passive Diffusion Across a Membrane

An equation similar to Equation 1.10 may be used to model the process of passive diffusion. The rate of change of concentration of an internal solute of a cell, caused by passive diffusion into an environment with a constant solute concentration, is given with

\[\frac{dC}{dt} = -k(C - C_x) \]

(1.12)

where \(C \) is the internal concentration for a cell of unit volume and unit surface area, \(C_x \) is the environmental concentration, and \(k \) is the proportionality constant for diffusion rate. The integrated form of the equation is

\[C_t = (C_0 - C_x)e^{-kt} + C_x \]

(1.13)

where \(C_t \) is the concentration in the cell at time \(t \), \(C_0 \) is the initial internal concentration, and \(C_x \) is concentration of the external environment, assumed to be constant for the duration of the diffusion process.

Exercise 1-7: Write a program using Equation 1.13 to simulate diffusion from a cell of unit volume and unit surface area having an initial internal solute concentration of 100 units per unit volume. At time
zero the cell is put into an environmental solute with a concentration of 50 units per unit volume. The diffusion rate constant is 0.20 minute$^{-1}$. The graphical output from your program should show the concentration of internal cell solute for a period of the first 120 minutes.

1.6 Von Bertalanffy’s Model of Fish Growth

This classical model describes fish length as a function of age, based on the assumption that fish growth is proportional to the difference between the length and a theoretical maximum length. That is, fish grow more rapidly when they are smaller, with growth rate declining as their size approaches the maximum. The differential equation describing this process is

$$\frac{dL}{dt} = k(L_m - L)$$ \hspace{1cm} (1.14)

where L is fish length, L_m is the theoretical maximum length, and k is the growth rate constant. This equation integrates to

$$L_t = (L_t - L_m)e^{-kt} + L_m$$ \hspace{1cm} (1.15)

where L_t is length at time t and L_t is length measured at $t = 0$.

Exercise 1-8: DeMarais (1985) studied growth of a small flatfish, *B. niloticus*, in a bay of the Mediterranean Sea. During the first year of their life these fish follow the Von Bertalanffy growth model, and may obtain a maximum length of 51.6 mm. Assuming an initial length of 8.2 mm and a growth rate constant of 0.23 month$^{-1}$, write a program that simulates growth of this species over a period of 12 months.

1.7 Model of Inhibited Growth

A model of population growth that is slightly more realistic than that considered in Section 1.1 can be developed by assuming that a population does not grow beyond some upper limit, L. One form of this model is given in the following differential equation:

$$\frac{dN}{dt} = kN(L - N)$$ \hspace{1cm} (1.16)

where N is population number or density as before. (In this model the rate constant k will have different dimensions than the constant as defined

1.8 Kinetics of Bimolecular Reactions

Assume that two chemical reactants, A and B, interact to form a product P, as described in the following reaction:

$$A + B \quad \overset{k}{\rightarrow} \quad P$$

The rate at which reactant B is used up depends upon the concentrations of both A and B:

$$\frac{d[B]}{dt} = -k[A][B]$$ \hspace{1cm} (1.18)

where $[A]$ and $[B]$ indicate the concentrations of reactants A and B respectively, and k is the constant for reaction rate. The reaction between A and B will proceed differently depending upon the relative concentrations of A and B.

If $[A] = [B]$, then Equation 1.18 becomes

$$\frac{d[B]}{dt} = -k[B][B] = -k[B]^2$$ \hspace{1cm} (1.19)

This equation may be integrated to obtain the equation

$$\frac{1}{[B]_t} = kt + \frac{1}{[B]_0}$$ \hspace{1cm} (1.20)
where \([B]_t\) is the concentration of \(B\) at time \(t\), and \([B]_0\) is the initial concentration at \(t = 0\). This equation may be rearranged to solve for \([B]_t\):

\[
[B]_t = \frac{[B]_0}{1 + ([B]_0kt)}
\]

(1.21)

Equations 1.20 and 1.21 are model equations for the kinetics of “second-order reactions”, in which the rate is proportional to the product of the concentration of two reactants (or the square of one, because \([A] = [B]\)). When data are collected from such reactions and are plotted with \(1/[B]\) on the \(y\)-axis and \(t\) on the \(x\)-axis, the result will be a straight line with slope equal to \(k\) and a \(y\)-intercept equal to \(1/[B]_0\). This is easily seen from Equation 1.20 which has the form \(y = a + bx\).

In contrast to the above, if the concentration of reactant \(A\) is much greater than that of \(B\), then the concentration of \(A\) will not change significantly as the reaction proceeds. \([A]\) may be considered constant in this case, and can be combined with \(k\) to produce a new constant, \(k'\). The differential equation describing this is obtained from Equation 1.91 as follows:

\[
\frac{d[B]}{dt} = -k[A][B] = -k'[B]
\]

(1.22)

This equation will integrate to:

\[
\ln[B]_t = -k't + \ln[B]_0
\]

(1.23)

and can be solved for \([B]_t\):

\[
[B]_t = [B]_0e^{-k't}
\]

(1.24)

You should recognize this last equation as that of exponential decay (Equation 1.6). Equations 1.23 and 1.24 are the model equations for the kinetics of “first-order reactions”, where the rate depends upon the concentration of only one reactant. When data obtained from first-order reactions are plotted with \(\ln[B]\) on the \(y\)-axis and \(t\) on the \(x\)-axis, the result will be a straight line with a slope of \(-k'\) and a \(y\)-intercept of \(\ln[B]_0\).

The terms zero-order, first-order and second-order were first employed to describe the kinetics of chemical reactions. However, they are now generally used to describe any rate process which is constant (zero-order), or is dependent on the concentration of a single variable (first-order), or is dependent on the product of two variables or the square of one variable (second-order).

Equations 1.22 and 1.24 are important because they show that reaction order is affected when one reactant is held constant, whether from a high relative initial concentration or from being maintained at constant level by other processes. First-order reactions will be encountered frequently in later chapters.

Exercise 1-10: Write a program that uses Equation 1.21 to simulate a second-order reaction. Start with \(B\) having a concentration of 5M, and set \(k = 0.20\). Your program should find \([B]\) at one-second intervals from 0 to 20 seconds. Have your computer produce graphs showing both \([B]\) and \(1/[B]\) over the 20-second period. (If your graphical capabilities permit, it is instructive to show both \([B]\) and \(1/[B]\) on the same graph. In this case, the vertical axis will have to be labeled as arbitrary “units”.)

Conclusion

This chapter has briefly introduced some fundamental analytical models that have been developed from differential equations. One objective has been to show that this important technique is useful in describing biological phenomena. Another objective has been to provide an opportunity for some elementary programming of biological simulations. In this chapter the techniques of calculus were used to convert differential equations into usable models. In subsequent chapters different methods of working with differential equations will be introduced.