Runoff

- SCS Method
 - Designed for small scale watersheds (agricultural)
 - Designed for watersheds with topography
 - Accounts for land use characteristics
 - Accounts for soil conditions
- Rational Method
 - Lumped parameter model
 - Requires calibration

Soil Moisture and Infiltration
Darcy Flux and Infiltration

- The Darcy Flux is given by
 \[q = -K \frac{dh}{dy} \quad (11.1) \]

- The head is defined as the soil suction head plus the gravitational head
 \[h = \psi + y \quad (11.2) \]

Infiltration

- Through substitution the Darcy Flux is
 \[q = -K \frac{d}{dy} (\psi + y) \quad (11.3) \]

- Using the chain rule, the Darcy Flux becomes
 \[q = -K \frac{d\psi}{d\theta} \frac{d\theta}{dy} - K \quad (11.4) \]

Infiltration

- Soil diffusivity can be defined to be
 \[D = K \frac{d\psi}{d\theta} \quad (11.5) \]

- The Darcy Flux becomes
 \[q = -D \frac{d\theta}{dy} - K \quad (11.6) \]
From the chain rule the Darcy Flux equation becomes Richard’s Equation for soil moisture
\[
\frac{\partial \theta}{\partial t} = -\frac{\partial q}{\partial y} = D \frac{\partial^2 \theta}{\partial y^2} + K \tag{11.7}
\]

When both the soil diffusivity and the hydraulic conductivity are constant, irrespective to soil moisture Richard’s Equation simplifies
\[
\frac{\partial \theta}{\partial t} = D \frac{\partial^2 \theta}{\partial y^2} \tag{11.8}
\]

Which can be solved as Horton’s Equation
\[
f(t) = f_c + \left(f_0 - f_c\right) \exp(-kt) \tag{11.9}
\]
Phillip’s Equation

- The cumulative infiltration is defined as

\[F(t) = \int f(t) \, dt \]
(11.10)

- Phillip solved the Richard's equation under less constrictive conditions.

\[F(t) = St^{1/2} + Kt \]
(11.11)

Phillip’s Equation

- Which gives the infiltration rate through differentiation

\[f(t) = \frac{1}{2} St^{1/2} + K \]
(11.12)

Green-Ampt Infiltration
Green-Ampt Infiltration

- From the plug-flow model, the iterative cumulative sum of infiltration is given by

\[F(t) = K_i + \psi \Delta \theta \ln \left(1 + \frac{F(t)}{\psi \Delta \theta} \right) \]

(11.13)

- Which is required in the Green-Ampt infiltration model

\[f(t) = K \left(\frac{\psi \Delta \theta}{F(t)} + 1 \right) \]

(11.14)

The change in soil moisture is related to the effective porosity and the effective degree of saturation

\[\Delta \theta = (1 - s_e) \theta_e \]

(11.15)

<table>
<thead>
<tr>
<th>Soil class</th>
<th>Porosity</th>
<th>Effective porosity</th>
<th>Matric head</th>
<th>Hydraulic conductivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>0.37</td>
<td>0.36</td>
<td>4.95</td>
<td>11.78</td>
</tr>
<tr>
<td>Loose sand</td>
<td>0.41</td>
<td>0.34</td>
<td>3.18</td>
<td>1.50</td>
</tr>
<tr>
<td>Sandy loam</td>
<td>0.63</td>
<td>0.42</td>
<td>11.01</td>
<td>1.09</td>
</tr>
<tr>
<td>Loam</td>
<td>0.63</td>
<td>0.42</td>
<td>11.01</td>
<td>1.09</td>
</tr>
<tr>
<td>Silt loam</td>
<td>0.63</td>
<td>0.42</td>
<td>11.01</td>
<td>1.09</td>
</tr>
<tr>
<td>Sandy clay</td>
<td>0.39</td>
<td>0.34</td>
<td>14.05</td>
<td>0.11</td>
</tr>
<tr>
<td>Clay loam</td>
<td>0.44</td>
<td>0.43</td>
<td>30.08</td>
<td>0.10</td>
</tr>
<tr>
<td>Silt clay</td>
<td>0.47</td>
<td>0.42</td>
<td>21.30</td>
<td>0.10</td>
</tr>
<tr>
<td>Loam</td>
<td>0.58</td>
<td>0.43</td>
<td>15.32</td>
<td>0.11</td>
</tr>
<tr>
<td>Sandy clay</td>
<td>0.50</td>
<td>0.42</td>
<td>16.65</td>
<td>0.10</td>
</tr>
<tr>
<td>Clay</td>
<td>0.50</td>
<td>0.42</td>
<td>16.65</td>
<td>0.10</td>
</tr>
<tr>
<td>Silt clay</td>
<td>0.50</td>
<td>0.42</td>
<td>16.65</td>
<td>0.10</td>
</tr>
<tr>
<td>Loam</td>
<td>0.50</td>
<td>0.42</td>
<td>16.65</td>
<td>0.10</td>
</tr>
<tr>
<td>Sandy clay</td>
<td>0.50</td>
<td>0.42</td>
<td>16.65</td>
<td>0.10</td>
</tr>
<tr>
<td>Clay</td>
<td>0.50</td>
<td>0.42</td>
<td>16.65</td>
<td>0.10</td>
</tr>
</tbody>
</table>

The numbers in parentheses below each parameter are one standard deviation around the parameter.
Soil Infiltration

Application rate influences both the ponding time and the cumulative infiltration without ponding.

- Slower application rates allow for greater amount to be infiltrated, and a longer time before ponding.
- Irrigation run times should not extend beyond the ponding time.